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ABSTRACT

The inadequacies in present measurement models are
indicated and a description is given of how tree theory, a
theory-generative model, overcomes these inadequacies. Amona the
weaknesses cited in many measurement models are their untested
assumptions of linear order and unidimensionality and their inability
to generate non-associational relationships for a given set of
empirical events. Tree theory is a measurement model whose intent 'is
the generation and testing of specific logical relationships among
empirical events. Tree theory has as its basic mathematical framework
free Boolean algebra and employs the multinomial distribution as the
basis for its statistical tests. The method of tree theory is
described in terms of its Boolean algebraic and statistical

procedures. Applications are then cited for the fields of evaluation

and developmental psychology. . (Author/LH)
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Abstract

The purposes of the paper are to indicate the inadequacies in pre-
sent measurement models and to describe'how tree theory, a theory-
generative model, overcomes these inadequacies. Among the weaknesses
cited in many measurement models are their untested assﬁmptions of liﬁ-
ear order and unidimensionality, and their inability to generate non-
associational relationships for a given set of empirical events.

Tree theory'is a measurement model whose intent is the generation
and testing of specific iogical relationships among empirical events.
Tree theory has as its basic mathematical framework free‘BooIean alge-
bra and employs the multinomial distribution as the basis for its sta-
tistical tests. ‘The method of tree theory will be described in terms

of its Boolean algebraic and statistical procedures. Applications are

then cited for the fields of evaluation and developmental psychology.




TREE THEORY: A THEORY-GENERATIVE Pﬂ’)ASURE(MENT MODEL

Peter W. Airasian ‘ William M. Bart
and .
.. Boston College University of Minnesota

Measurement models in the behavioral sciences are marked by a series
i of assumptions about the phenomena measured. The first section of this
paper identifies a number'!of these assumptions and ‘indicates their impact
on measurement practices. The basic argument made is that the stronger a
me'asurement: model is with respect to the assumptions i‘t: makes about the
traits measured, the less useful for i:heory generation the model is. The‘
second section of the paper introduces tree theory, a theory-generative
measurément model which makes few assumptioné about the traits measured.
Tree theory is presented in an algebraic and statistiéal mode. Applica-~

tions of the theory are cited.:

Assumptions of Present Measurement Models o

Linear Order Assumption

E, Most measurement models used in the behavioral sciences assume the

STy

existence of a linear order in the trait being measured. For clarity, any
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property, phenomenon, variable, or entity to be measured will be called a

trait. A trait may be further defined as a set of events or manifestations.

Any trait (say T) is linearly ordered if one can define a relation

(say R) on the trait with arbitrary constituent manifestations h, k, and
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1, with the following properties:

1. .assymctric property: hRk implies kRh, where ¥ means "not R";

2. transitive property: hRk and kRl implies hR1;

3. conneccted property: either hRk or kRh (Birkhoff & MacLane, 1965).
Examples of linear ordering relations are "is prercquisite to," "is greater
than," and "is less than.'" Any trait on whith'an assymetric, transitive, 1.
and connected relation can be defined is linearly ordered.

Measurement experts such as Brian Ellis (1968) contend that the exis-

tence of a quantity implies the existence of a linear order. 1In classical

test theory (Gulliksen, 1950) as well as strong latent trait test theory
(Lord and Novick, 1968), linearly ordered traits are assumed. The assump-

tion of a linear ordering of the events comprising a trait is extremely
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crucial, for it permits measurement to be‘defined as the assignment of num-
bers to events. This definition is basic to measurement theory (Campbell,

1928; Stevens, 1946).

R SR S s S L

A linear order among the events measured makes meaningful the numeri-

cal valués assigned to the events. The quantification of events is not a

neutral procedure. For quantification to be meaningful,‘i; is essential

that the relational system among the real numbers mirror the relational

system among the events of the trait measured. In the terms of Suppes and

Zinnes (1963), an isomorphism must exist between the numerical relational

system and the empirical relational system. If suclh an isomorphism does

not exist, then the use of linearly ordered numerals to depict unique

events on a non-linearly ordered set of events is inappropriate.

Recent evidence (Bart, 1970) indicates that it is mathematically un-

reasonable to assume a linear order among a set of events if the set num-

bers more than four. Instructional planners (Gagne, 1961; Resnick, 1967)




and evaluators (Airasian, in press) have shown that the tasks involved in
lcarning many concepts, skills, etc., are frequently nonlinearly ordered.
Suppes and Zinnes (1963) have discussed the existence of partial and pseudo
ofdcrs amonyg, classes of psycho]ogicnl.phcnomcna. Thus, a linear order is
but Ane of wany possible orders applicable to the description of psycho-
logical traits.

Two consequences result from assuming"a.linear order in a trait when
such an order does not empirically exist. First, if a trait is not linearly
orderd, then not even an ordinal scale can be attributed to the trait. And
if the trait measured does not have at least an ordinal scale, then the use
of many common statistical procedures such as cprrelational analysis, ahalyf'
sis of variance, and the like is suspect.

The second implication involves the.broad domain of scores. The most
‘common score index utilized in the behavioral sciences is the total or
summative score., Such a score is‘usually arrived at by summing‘an indivi- -
dual's correct responses to a set of test itemé. The use of summative

scores can be questioned in its own right. For example, what is the justi-

. fication for using a linear combination relation as the most appropriate

algebraic function relating item scores to trait scores? Also, what is the
justification for decomposing performance of a trait into a series of inde-
pendent subtraits such that each item measures exactly a unit level of the
corresponding subtrait? However, summative scores are also closely related
to assumptions of trait and item orders, for if a trait or related items are
iinearly ordered, then one does nét need to use summative socres to charac-

terize performance since each item in the order represents a unique level
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1y result in the same number being assigned to different sets of events.

of performance. Two individuals who attain a score of 8 on a linearly
ordeged set of items attain their scores not necessarily because they an-
swered 8 items correctly, but rather because the highest level item they
anéwercd correctly was valued at 8. Further, both individuals have at-
tained identical item response patterns, since for linearly ordered items
a given scﬁre engenders one and only one respdnse pattern.

Summative scores, which are utilized by most accepted behavioral
science measurement models, violate the accepted definitionbof measurement.
Most models define measurement as the assignment of numbers to events (in
keeping with the linear order assumption). A summative score violates this
definition since a summative score involves the assignment of a number to
a class of events.

But more than viélating an accepted definition, summative scores cloud

the meaning of performance'on a trait. Consider two individuals each of

whom attains a summative score of 7 on a non-linearly ordered set of test

items. Although the scores impiy that the individuals are equivalent in
performance, such is not necessarily the case, for the individuals may have

answered correctly non-overlapping sets of items. Summative scores general- : B

But because a linear order in the trait measured is assumed (and in spite

of the use of summative scores) we are conditioned to thinking that higher

scores indicate higher levels of performance. However, in cases where a
linear order among the events measured does not exist, a high score is

likely to be.indicative of a greater breadth of knowledgeAin'the trait

rather than indicative of any absolute level of knowledge in the trait.
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Conscquently, if we are to extricate ourselves {rom the problems engendered

by summative scores and if we are to know whether a score indicates breadth

or level of the trait, then we must investigate, not assume, the orders of

the traits we measure.

Latent Trait Continnum Assumption

TR Ry T TR N e T e 4

A second assumption made in mcasurement models is that of an under-
lying trait continuum (Gulliksen, 1950; Lord & Novick, 1968; Magnussen,
1967;‘ Rasch, 1960). In most measurement we are concerned with the under-'
lying trait which determines performance on an event or a set of events.
Most models assume that_individuals distribuQQ'fheméelves on é single;
underlying continuum with respect to possession of the tréit.' Tﬁe fiﬁite

set of events measuring performance on a trait is assumed to be a sample

from the universe of events which could be used tQ.measure the continuum.

‘Further, it is generally assumed that a monotonic relationship exists be-

tween degree of trait possession and score on the sample of items. These

assumptions result in the use of continuous probability distributions,

- most frequently the normal, to describe the distribution of individuals

with respect to the ;rait_continuum,

We define our trai&s in terms such as fourth-grade arithmet@c achieve-
ment, creativity, spatial reasoning,'attitude toward school, and so on. To
measure, we typically select a sample of items from the universé (usually
with some intent to include items near the .5 level of'difficulty) and ad-
minister our instrument. Individualé who attain high scores (almost always
summative in nature) are identified as possessing higher levels of achieve=
ment, spacigl reasoning, and the like. The trait continuum assumption

frequently leads us away from asking such legitimate questions as: (1) Do

. 7
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more items answered covrectly truly indicate a higher level of performance

or does discussion of level of performance depend upon more precise informa-

tion abont inter-item velationships? (2) Can we define the universe of

items clearly enough to justify inferences to a single underlying trait con-

tinuum? (3) Ts it appropriate to charactevize general. traits such as
creativity and attitnde toward school as comprising a single continuum or
might there be a mmber of continua making up these traits?

In‘sum, the lincar order and underlying latent trait continuum assump-

- tions have lead users of accepted measurement models away from consideration

of inter-event (or inter-iteﬁ) rclationships. Much information about traits

is thereby ignored. It is in consideration qf these inter-event rélationships,
be they linear ordered or not, that the richness for Behavioral science

model building lies. It is'ﬁhrough‘iﬁvestigation of such relationéhips, or

the lack of them, that measurement models can be most theory-generative. .

Tree Theory
Tree theory is a theory-generative measurement model which makes few
aésupmtions about the traits measufed. In fact, one of theiﬁtipe aims of
tree theory is to provide a frameﬁork'to enable one to test assumptions of
linear order, unidimensionality, the appropriateness of summative scoreé,
and the like. -
However, tree theory is capable of more than simply testing assumptions

made by other measurement models. With tree theory one can also investigate

_the accuracy of any a priori postulated order among a set of events used

_to describe g trait. Further, in those cases where no a priori order
'b.. A

among the ’events is hypothesized, tree theory permits the generation of




the specific logical relationships which exist among the events. It is
through the investigation of these inter-event relationships that theories
about traits can be constructed and tested. The power of tree theorj lies
in its few assumptions and in its ability to generate and test logical
relationships aniong the events . utilized to represent a trait.

To specify the exact logical relétiohships'which exist among a set
of events, tree theory utilizcs Boolean algecbra. Item response patterns
are viewed as a form of a frece Boolean algéﬁfa,‘with the number of genera-
tors in the algebra being equél to the number of items Br events studied.
The union of the observed item fesponse patterns, as représented in Boolean
form, defines fhe tree for those events or items (i.e., the set of logical
relationships among the events or items manifested in the item response
patteyns)u

Specific item parameters, as well as the goodness-of-fit of a speci-
fic tree to a set of items, can be determined using a statistical model
Based upon the multinomial distribution for the item response patterns.
The'following two sections of the‘paper describe thé Boolean algebraic
framework aﬁd the'rationaleifor the statistical model used to estimate

item parameters and test the goodness-of-fit of specific trees.

Algebraic Procedures

Trge theory is used to determine the logical relationships among
empirical events. This task is accomplished through an examination of
the itgm responsé patterns obtained from a test composed of items mea-
suring the cmpirical events. Another way to view this process is to

state that tree theory reveals the logical relationships among items. '




At present, in order to cmploy treec theory, test items must be dichot-

omously scorved (e.g., a score of "1" is given if an individual "passes" an

item and a scove of "0" is given il the individuals "Ffails" an item). Given

that one has items which can be dichotomously scored, he can administer the

items to a sample of subjects Fn obtain a set of item response patﬁerns;
Every sct of distinct item response patterns will determine a unique set
of rc]at1un«h1ps among the items. In fact, there is a one-to-one correspond;
ence hetween scts of inter-item relationships and sets of distinct response
patterns (Bart, 1970).

For a set of items, all of the sets of inter-item ldgical relation-
ships form é system isomorphic.tovthat of a free Boolean algebra. Any‘
set of logical relationships among a sct of items is a’tree. Further if one
cons1dcrs the set of distinct response patterns for a sél of items, all

subscts of that complete set of response patterns glso form a system isomorphic

to that of a free Boolean algebra. Thus, both the syStem of Sets of logi-

’ ca1 inter-item relationships and the system of sets of distinct item res-

- ponse patterns have a free Boolean algebraic structure.

In comparing free Boolean algebras with item response pattern sets

. ’ B
- ‘one can note correspondences between elements in one set and elements in

the other sct. The dichotomously scored test items have the same pro-
perties as gencrators in a free Boolean algebra. As an item can have

two scores, "0" for an incorrect response and "1" rfor a correct response,
S0 a generator has two states, a negated state and a non-negated state.
Thus, for a score of "1" on item i there corresponds the Boolean algebra
generator Pi and for a score of "0" on item i there corresponds.the gen-

erator -Pi'
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fach item response pattern possible for a set of items has a counter-

part element in a free Boolean algebra called an "atom"; any non-null
element « in a free Boolecan algebra is an atom if, for any element B in

the same algebra, cither « € f or a2 = 0 where "." refers to intersection.

~Also, as an item response pattern is a function (co-occurrence) of indi-

vidual item scores, so an atom is a function (intersection) of values of

individual generators. TFor example, the item response pattern (0,1,1) cor-

responds to the atom “P1°P2°P3° Further, as one can gencrate a set of dis-

tinct item response patterns which will determine a tree for the items, so

one can generate any element in avfree Boolean algebra by forﬁing the union

of a certain set of atoms. Thus, because of the isomorphic relationship,
many parallels can be cited between response pattern spaces and free Boo-

lecan algebras.

To ecxemplify how the method of treé theory is used, consider the

following situation. Let 1, 2, and 3 be three items testing numerical

reasoning. Assume that the three items were administered to a sample of

subjects and certain distinct response patterns were obtained. Let the

~obtained response patterns and corresponding Boolean atoms be those in-.-

dicated in Table 1.

Insert Table 1 about here

To determine the best fitting tree for the items one forms the union
of the obtained Boolean atoms, e.g., -Pl'-PZ'-P3V Pl.-PZ.-P3v -P].-PZ.P3V
- - " 11 " " LI} )
Pl' PZ.P3V Pl'PZ'P3 P2+ Pl'P3 where "+ " refers to "implies", "v" refers
to "either ... or", and "." refers to "and." Therefore, the tree for

items 1, 2, and 3 indicates that success on item 2 implies success on

item 1 and success on item 3. To simplity the union of the obtained atoms

i1




as in the example cited to form P2 *Pl.P3 various algebraic rules proper

to Boolean alpebra as discussed by Birkhoff and Maclane (1965) are to be
employed. Tn this example, the tree indicated implicative links among the
items which could give much information and direction to a tcacher or re-
scarcher--c.gn., the behaviors required for the reselution of item 1 and
item 3 must be mastered if behaviors required for the resolution of item

2 arc to be mastered. Trees may be represented graphically with branch-
like diagrams called trce graphs. For example, P2 ->P1.P3 is represented
graphically in Table 2. 1In Table 2, Pl is represented as a prerequisite to

P_, P, is represented as a prerequisite to PZ’ and P1 is represented as

2> '3

Inscrt Tablec 2 about here

logically independent of P3. Thus, success on item 1 is indicated as a pre-
: requisite to success on item 2, success on item 3 is indicated as a prerequi- -
? site to success on item 2, and a score on item 1 is indicated as independent
; of a score on item 3.

For a large number of items the number of trees is substantial. For

; n items there are 2n possible item response .patterns. Each subset of
£ those 2" possible item response patterns determines a tree; therefore,
L there are 22n trees possible for a set of n items since there are Zzn sub-
sets of possible item response patterns. Due to the fact that the number

of trees can be gigantic given a large number of items (more than 10),

WIS VRIS T K P
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effort are underway to render the method of tree theory into computer

language form.
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In addition to the cmpirical tree which is tﬁp union of the atoms
corresponding to the obtained distinct response pégterns for a set of
items, there are usually other tcnahle trees such that only response
patterns compatible with these trees are obtained. Other tenable trces
for a set of items can be determined by forming the union of the empirical
tree and some set of.unobtaincd atoms. Thus, the empirical tree is always
included in any tenable tree for a set of items. A response pattern is

compatible'with a tree if the atom corresponding to the response pattern

is included in the tree. Such a pattern is called a confirmatory response

pattern. For example, if one considers Table 1, response pattern (0,0,0)

is confirmatory with respect to the tree P 4P1.23 for the corresponding
2

atom -Pl.-Pz.-P3 is included in the tree P2 »Pl.Pa. A response pattern
is incompatible with a tree if the atom corresponding to the response pat-
tern is not included in the tree. Such a pattern is called an infirmatory
response pattern. For example, in considering Table 1 respbnse pattern
(1,1,0) ig infirmatory with respect t& the tree P2 »Pl.Pa for the cor-

A tree

responding atom Pl.Pz.-P is not included in the tree P, P

.P L
3 1°3
is confirmed if only confirmatory respsnse patterns are obtained from
the appropriate adiminstration of a set of items of a trait under con-
sideration. With the method of tree theory, a researcher could either

test specific hypothesized relationships among test items or determine

a posteriori specific relationships among test items.

Statistical Procedures
A tree can be generated from either the Boolean algebraic steps

just described or from an a priori notion regarding the logical relation~

ships among a set of test items. 1In either case, one frequently wishes

«
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-to go beyond the specification of a tree to estimate paramecters of parti-

cular items in the trce and to test the fit of the estimated parameters

to the obscrved data. This section of the paper presents the simplest,
measurcment.modcl applicable to estimating the conditional difficulties
of items in a tree. Those rcaders who scek a rigorous derivation of

the estimation procedures arc referred to Airasian (1970a, 1970b, in p;ess)

and Airasian and Bart (1970).

The statistical procedures are based upoh two postulates. The first
states that, s;nce tree theory is concerned with the discover& of inter-item
relationships, response patterns on dichotomously scored items must be uti-
lized as the basic data points. Summative scores are inappropriate indices
for studying the logical relationships between items for the reasons cited in
the first section of the paper. The second postulate recognizes that the trees
studied in a given context are composed of a finite number of test items.

The number of resulting response patterﬁs is therefore also finite. As a
consequence, a discrete probability distribution is used to describe the
distribution of response patternms. |

The procedures for estimating conditional item difficulties and con-

commitant standard errors are based upon two conditions. First, a greater

number of confirmatory response patterns than items to be estimated must
exist. Second, at least one relationship'éf'implication between the items
must be manifested. With these conditions satisfied the general argument

for the estimation of the conditional item difficulties and standard errors

proceeds as follows.

n
For n items which are dichotomously scored there exist 2 different
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patterns of item respon;es. However, the-tree for a set of items will
define one or a number of implication relationships between items which
will preclude the occurrence of certain réSponse patterns. Thus if items
A and B represent é tvo~item lincarly ordered tree with item B implying
item A, the response pattern iﬁ which item B is correct but item A is
incorrect should not occur.

The Boolean procedures define a tree based upon consideration of each
individual's response pattcrh-tb the items. Consequently an implication
relationship will be defined only when all the data conform to the rela-
tionship. One errant response pattern is sufficient to rule out what ap-
pears, in all other batterné, to be a hypothesized relationship between
two items. In one sense the rigi&ity of the aigeBraic procedures is desir-

albe because a limitation of the statistical model is that it is deterministic,

that is, it can handle only confirmatory response patterns for a given tree.

Although the techniques will not‘be elaborated here, it is possible to handle
errant response patterns by Guttman reproducibility procedures (Guttman, 1950;
Green, 1956), by specifying a priori tolerance levels'for error, or by ignoriné
those patterns which can be explained on the basis of guessing probabilities.
The distribution of allowable response patterns for a tree can be
representea by the multinomial distribution. This ‘istribution rep?esents
the generalization of the binomial to cases in which there are greater than
two mutually exclusive and exhaustive response categories. The distribu-

tion function is

s A, o A

= In! .. .n.
B L) 3
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where N = total number of subjects with confirmatory response patterns,

number of subjects manifesting the j-th response pattern,

n

n,
J
Pl
J
In general, the parameters of interest will be the conditional difficulties

n

probability of the j~th response pattern.

for the items in the trece. 1In the two item linear order example cited above,
the parameters would be P(A) and P(B/A). The pfocedures permit the estimation
of morc unusual conditional difficulties however, such as the probability of
one item being correct given an incorrect response to a prerequisite item.

The nature of the item paramecters is defined by the naturc of the logiéal
relationships between the items in the tree.

Given a tree, the inter-item logical relationships define the response
patterns acceptable for that tree. Again referring to the two i;em linear
order, the implicative relationship between A, the lower order item, and B, the
higher order item, permit only three of the possible four response patterns.
Using a 1 to rcpresent a correct item response and a 0 té represent an in-
correct item response (with the first number representing performance on
item A), the three allowable response patterns are (00), (10), and (11).

Each of these response patterhs can in turn be defined in terms of the item
parameters to be estimated. Thus, the probability of the pattern (10) is
[P(A) (1-P(B/A))].

After expressing the.prébability of each allowable response pattern for a
given tree in terms of the parameters, maximum likelihood estimation procedures
can be utilized to derive the parameéer estimates. Variance estimates of the
conditional difficulty estimates can be found by taking the second derivative

of the likelihood function of the response pattern probabilities with respect

RN
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to cach parameter and finding the reciprocal of the negative expectation of
the dervivative. Standard errors can be calcultated from the variance estimates

(Airasian, 1970a, 1970bh).

.

The Boolean algebraic procedures indicate where logical relationships
exist among a set of test items. The conditional d-ifficulty estimates
.provide more precisc information about these rel:iti.onships by indicating
the difficuity of an item given performance on all related items. The
estimated standard error for each conditional item difficulty gives an
indication of the confidence limits of the estimate.

Under certain conditions it is possible to test the fit of the esti-
mated pattern probabilities to the observed pattern probabilities. Such
a test indicates the gooduess-of-fit of the estimates to the obse.rved
data. The condition required to perform such a test is that at least one
degree of frecdom for the test remain after the estimation of the item
parameters. Consider first a linearly ordered tree in which, given two
items, one implies the other. For such tree it can be deomnstrated that

there exists one more allowable response pattern than items in the order.

Thus, if each item parameter is estimated, no degrees of freedom remain

TR el S AN e oo e s o

to perform the significance test. The fit of a linearly ordered tree is

e

therefore deterministic. If, however, one wishes to test the hypothesis

e i

that one or more of the item parameters will have a given value, degrees

of freedom which are not used in the estimation of these parameters are
available for the significance test.

For other, non-linear trees, sufficient degrees of freedom will re-
main after the estimation to permit the use of the likelihooci ratio sta-

tistic. This statistic (\) is given by the ratio of the maximum of the

17
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likelihood in the hypothesized parameter space ® to the maximum of the
likelihood in the unrestricted parameter space Q. Where L(yw) is the maxi-
mum of the likelihood in the restricted space and L(9) is the maximum of
the likelihood in the unrestricted parameter space, the likelihood ratio
statistic is given by
L(m)‘_ .

=TI

For large samples, the critical points of the \ distribution can be ap-

proximated by the Chi-Square distribution, where
x2= -21log A .

The statistical procedures permit estimation of item parameters
which take into account the logical relationships between items identi-
fied by the Boolean procedures. Confidence limits for these estimates
" can be derived as a function of the estimated standard errors. Further,
a test of the fit of the estimated parameters to the observed data can be
performed, given that there exist sufficient degrees of freedom. Such
procedures provide more precise information about the relationships between
a set of related test items. The estimates can be utilized as a basis for

revision of elaboration of given trees (Airasian, in press).

Applications
Applications of tree theory will be cited in two areés, evaluation
and developmental psychology. One primary use of tree theory is in
placement and formative student evaluation. In placement evalu;tion (Ma~
daus &'Airasian, 1970) one strives to obtain an indication of the extent

to which students entering a course have mastered the prerequisites for

18
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the course. In formative evaluation, the aim is to identify learning
wcaknessces 5nd the relationship betwcen thesc weaknesscs prior to grading
(AMirasian, 1968).

To usc the pcrforﬁance on ﬁarticulnr prercquisite skills and abilities
as a basis for placing a student at a particular point in instruction,
one necds to know the rclationships bctwécn perférmance on.the prerequi-
sites and performance on the cburse material. It makes little sense to
deprive a student of admittance to a course or to attempt to place him
somewhere in that course based upon his entry behaviors unlcs; one can
define the nature of the specific relationships between entering repertory
and the course objectives. For such.purposes, summative scores are inade-
quate. Trce theory, however, can define the set of logical relationships
between prercquisites and course performance. The conditional difficulty
estimates can provide an index of the likelihood of success on course
related tasks given mastery or lack of mastery on prerequisite tasks. Use
of tree thcory can result in more iﬁtelligént and accurate student place-
ment.

Formative evaluation requires that students be afforded Spgcific in~-
formation about what they have learned and what they have yst to learn at
frequent stages of instruction. The aim is to'permit correction of learn=-
ing weaknesses prior to grading or the introduction of subsequent material.

Basing a formative test on a trec for a unit can provide students and tea-

chers with an exact indication of what each student has mastered. Further,
the types of relationships between the elements to be learned afford an

efficient strategy for sequencing correction of unmastered material.
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In developmental psychology phe'dcccrminntion of orders, patterns, and
sequences for cognitive behaviors is an important objective. For example,
in Piagetian cognitive stage thecory there is the contention that many
cognitive proécsscs comply to a linear hierarchy. Tree theory analysis
could be used not only to test hypothesized trees (e.g., a linear hierar-
-chy) for various cognitive bechaviors but also to determine exacting logi-~-
cal relatioﬁships among the cognitive behaviors that will allow revision
of d9vé10pmenta1 psychological thcories. 1In such areas as developmental
psychology the discovery potentialities of tree theory should be richly

manifested.
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Table 1
Distinct Ttem Response Patterns and their

Corresponding Atoms obtained for Items 1, 2 and 3.

Item Corresponding

1 2 3 Atonms

1) 0 0 O -Pl.-Pz.-P

3) O O 1 ‘-Plo . -?2 . P
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4) 1 01 Pl.-Pz.P
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